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Full-Wave Characterization of Microstrip Open End
‘Discontinuities Patterned on Anisotropic Substrates
Using Potential Theory

S. S. Toncich, Senior Member, IEEE, R. E. Collin, Fellow, IEEE, and K. B. Bhasin, Senior Member, IEEE

Abstract—A technique for the full-wave characterization of
microstrip discontinuities fabricated on uniaxial anisotropic
substrates using a dynamic source reversal method based on
potential theory is presented. The dynamic source reversal
technique was introduced in 1989 by R. E. Collin and S. S.
Toncich [1]. The open end discontinuity is enclosed in a cut-off
waveguide of infinite extent, with the anisotropic axis aligned
perpendicular to the air-dielectric interface. A full description
of the sources on the microstrip line is included with proper
edge conditions built in. The resulting computer program is
written in compiled BASIC and is intended for execution on
personal computers possessing minimal memory and/or pro-
cessing resources. Extension to other discontinuities is dis-
cussed.

INTRODUCTION

ILE there is extensive data available on the mi-
crowave characterization of a variety of microstrip
discontinuities using both quasi-static [2-4] and full-wave
techniques [5-7], the characterization has been restricted
to isotropic substrates. To date, there is no published data
regarding the frequency dependent characterization of mi-
crostrip discontinuities patterned on anisotropic sub-
strates. Some very useful microwave substrates however,
specifically sapphire, are anisotropic and so any discon-
tinuity structures fabricated on them cannot be properly
characterized by the techniques that have been developed
for isotropic dielectric substrates.

A technique for the full-wave characterization of mi-
crostrip open ends fabricated on lossless uniaxial aniso-
tropic substrates has been developed and is presented here.
It is based on a dynamic source reversal technique that
uses potential theory [8], which is a generalization of the
charge reversal technique introduced several years ago [2].
The discontinuity is enclosed in a waveguide of infinite
extent whose dimensions are such that the guide is cut off
for the propagating frequency of the dominant microstrip
mode. All sources on the microstrip are represented, and
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the technique does not require a model for the source ex-
citation. The electric fields inside the waveguide are ob-
tained exclusively in terms of the sources on the micro-
strip line and the scalar, rather than dyadic Green’s func-
tions. These features combined to provide for accurate
modeling of the discontinuity along with substantial com-
putational savings over other techniques. This is impos-
tant in computer aided design programs where many it-
erations are often required to obtain desired circuit
performance.

DYNAMIC SOURCE REVERSAL TECHNIQUE

The anisotropic axis of the substrate is aligned perpen-
dicular to the air-dielectric interface as shown in Fig. 1.
The anisotropic dielectric may be represented as a tensor
quantity given by

k(y) = K(y)l + [Ky(y) - K(y)]ayay (1)

where [ is the unit dyad, and «(y) = «,(y) = 1 fory >
h. The microstrip line is assumed to be infinitely thin and
located at a height y = A*. The sources on the line are
the longitudinal and transverse currents, J, and J,, re-
spectively, and the charge, p. In terms of these sources,
the scalar and vector potentials, ® and A, respectively,
for the dielectric loaded waveguide may be determined
from

(V2 + xkk}A,

—poJx 2)
— o, ?3)
= jougeolx — DB MS(y ~ h)
+ jwpoeeo(ky — &) ad/ d, @)
(8% /0x* + 8*/92%) + 3(k(»)d/8y) /8y + k*(Wk(]®
= —p/e + jolk, — DALMY = h)
— jolk, — k) 84,/8y (5)

(V2 + kkp)d, =

(V2 + kA,

where the Lorentz condition, V - A = —jwpgeox(y)®
along with dk(y) /dy = —(x — 1)6(y — h) have been used
to obtain (2)-(5) [9]. The potentials appearing in (2)-(5)
are obtained from the appropriate Green’s functions and
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Fig. 1. Shielded microstrip geometry. (a) Front view (b) Top view.

the corresponding sources using

Ax,z(x5 h’ Z) = Ko S , S Gx,z(x’ h’ Z; x,5 h’ Z’)
z' Jx’

< Jyo (&, hy ') dx’ de (6)

qu)(x7 h’ Z) = S , S , G(xa h: 35 xla h7 Z’)

Z
cox', h, 2') dx' dZ. @)

Expressions for the Green’s functions corresponding to
the geometry shown in Fig. 1 may be obtained in the fol-
lowing manner. G, and G, must satisfy the following

expression
(V + k)G, , = =8(x = x"o(y — W3z — 2). (8)

Expressions for the Green’s functions will be obtained us-
ing a Fourier transform method. Assuming a general so-
lution for G, , of the form

G,.=(1/2m 2 S_m e, (Me 7 dw  (9)
where

for G,

@ cos (u,x)
Pn(x) =
for G,

sin (u,x)

and u, = nw/2a for n odd, and the y dependence is of
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the form
1. = A, sin (pc) sin (ly), y < h (10a)
f,(») = A, sin (th) sin (p(b — y)), y>h (10b)

Substituting (9), (10a) and (10b) into (8) and performing
the required calculations, gives the Green’s function com-
ponents as

G, . (x, h, z;x', h, 2)

=1/ 2 S ¢n(x, x)DZ, sin (pc)

- sin (lh)e ¢~ dw (1
where
@, x, x") = cos (u,x) cos (u,x") for G,
¢, (x, x") = sin (u,x) sin (u,x") for G,
DZ, = 1/a(p sin (lh) cos (pc)
+ [ sin (pc) cos (lh)) (12)

and the 1’s and p’s are related by p* = k3 — w? — us, I
= xk} — w? — ul.

The expressions for G and G,, corresponding to ¢ and
A,, respectively, are more complicated since these expres-
sions are coupled. As a result, they must be solved si-
multaneously. However, solutions for G, and G may be
obtained in a somewhat easier fashion by noticing that

oo

G,(x, h, z; X', h, 2') = (1/2m) S

- 00

- g, b, By X', b, 7)™ dB
(13)

=]

G, h,zux',h, 7)) = (1/27 S

- fx, by B; X', b, 7)) dB
(14)
where g, () and f( ) are the Green’s functions calculated
for a z dependence of ¢7/% in [9], for an infinite microstrip

line with side walls, but not top cover. With a top cover
in place, the y dependence is chosen to be of the form

Ay, sin (Iy) + Ay, sin (Ly), < h

£ = {  sin () + gy i (). (158)
A, sin (p(b = y) y>h

and
By, 1,y) + B,, Ly),

o(y) = { 1n €08 (1Y) m 08 (hy), y<h (15b)
Bs, cos (p(d — y) y>h

instead of the decaying exponential functions used in [9].
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The eigenvalues for this configuration are, fory < h
1} = wk§ — 73 (16a)
13 = wk§ — /w7, (16b)

and p? = k3 — w? — u> fory > h, as in the case of G, ,,
while v2 = u2 + w?. Performing the required calculations
to solve for the unknown coefficients A4, ; ;, for ® will

result in the following expression which is analogous to
(13) in [9]

H,(w) = &3/ * (pn -
- sin (1y) /eo(p - sin (L) - cos (pc) + I
- cos (1) -+ sin (pc)))
+ (Lp/¥3) * (pa * sin (pc)
- sin (L,y) /eo(px - sin (pc) - cos (Lh) + L
+ ¢cos (pc) - sin (LA))). ' an

Performing the required contour integration to calculate
the inverse Fourier Transform for ¢ involving the expres-
sion | % H,(w)e’“"*) dw, and noting that dl,/dw =
~w/ly while dl, /dw = —(x/k)w/], allows for the ap-
propriate Green’s function for the potential to be ex-
pressed as

G(x, h, z;x', h, 2)

2

sin (pc)

= (1/ea) ;1 20 cos (u, x") - cos (u,x")

- {kg - F(m) - exp [=Ymlz = 2'[1/
(&S = P2 * Yom)
— FB(m)  exp [~Fumlz — 2’1/
(*3 = D) * Y} (18a)
where
Fm) =1}, - pp + sit® (4uh) + sit® () /(U2 * P
 (h - sin® (pue) + ¢ - sin® (I, h)
—(k — 1) - k§ - sin® (I,h) - sin (p,,0)
+ ¢cos (pn0)). (18b)
FB(m) = 1% - p% - sin (I,,h) - sin (B.0)/{(2% - ¢
k) - sin (P,,0) - sin (I,h)

hy -

b xprk BL-
—p—m'zm'(’('

- cos (I,h) — « -

¢+ Kk,

[

o8 (PuC)
sin (p,,¢) - cos (I,,h)

= Ky * Dm * sin (,0) © cos (PR},  (18¢)

g Kk%)l/ 2 and ¥,,,,
=W +k, 12— Kyk(z))l/ 2 are the evanescent waveguide

propagation constants, while the [, p,, /., and p,, are the
LSE and LSM eigenvalues, respectively, of the cut-off

where «, = k,/k. The v, = Wi + I3, —
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waveguide. These eigenvalues are related by the expres-
sions

2 —p2=@k-1)7 for the LSE eigenvalues.
(19a)

Ky * 12, — p2 = (ky — 1)? for the LSM eigenvalues.
(19b)

Note that when «, = «, the above expressions become the
same as for the isotropic case. Notice that the effect of the
anisotropy is to change the LSM eigenvalues compared to
those obtained for the isotropic case.

The final expressions for the remaining Green’s func-
tions for a dielectric loaded waveguide of infinite extent
now become

G, (x, h, z;x", h, 2')

= (1/a) n§1 Eo @n(x, x') * exXp [~ Yumlz — 2'|]

* F(m) /Y (20)

where F(m) is defined in (18b), ¢,(x, x') is defined in
(12), and G(x, h, z; x', h, 7’) is defined in (18).

With the Green’s functions so obtained, the compo-
nents of the electric field can be obtained from the poten-
tials given in (6) and (7), as

E, = —jwd, — 0% /dx, E, = —jwA, — 3% /dy

and

E, = —jwd, — 0®/0z @21
where it is required that for this geometry E, and E, vanish
on the microstrip. The fields thus obtained are expressed
in terms of the LSE and LSM (with respect to y) modes
of the dielectric loaded waveguide. The anisotropic effect
appears only in the LSM mode terms, which are present
in A, and . The LSE waveguide modes are unchanged
from those obtained for the isotropic case.

A complete set of dominant mode sources on the mi-
crostrip are represented: the longitudinal and transverse
currents, as well as the charge on the microstrip line, with
appropriate edge conditions built in. Over the useful op-
erating range of most microstrip discontinuities, the am-
plitude of the transverse current, J,, is very small relative
to that of J, and p, since the discontinuity is charge dom-
inated under such circumstances. The effect of J, becomes
more pronounced for wide strips (w/h = 5) as the fre-
quency is increased. Therefore, for a wide range of prac-
tical open end discontinuities, a valid approximation is to
take J, = 0, so therefore, 4, = 0. As a result, only the
boundary condition E, = 0 needs to be satisfied for this
problem.

A line terminated at z = 0, forming an open end, would
create reflected dominant mode sources on the line, along
with perturbed sources localized near the discontinuity.
The total source distribution on an open end discontinuity
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may be written as,
J (', by 2') = Jo,(x") (P — Re™P) + J(x', 2)
22)
p(x', b, 2) = p(@') (e + Re™™) + o', 2),
(23)

for 7/ = 0, where R is an unknown reflection coefficient,
and Jy, and p; represent the perturbed source amplitudes
near the open end.

An excellent representation for the x dependence of the

sources on the microstrip line can be given in terms of
weighted Chebychev polynomials, 7y (x/w). (1 —
(x/w))"'/% where w is the microstrip width. Using the
change of variable x = w sin O, the sources may be ex-
pressed as

IMAX

J,(0) = g]o l; cos (2i©'") /cos ©' (24a)
IMAX

p(0") = .230 Q; cos (2i0") /cos O (24b)

IMAX KMAX

Ji, O, 7)) =] ~§) /2]0 x cos (2i0)T;(z") /cos O’

(24¢)
IMAX KMAX
(0, 7) = ;o kgo Dy; cos (2i0")P,(z') /cos ©'

(24d)

where [, and Q; are the yet to be determined dominant
mode current and charge amplitudes for an infinite line,
and Cy; and Dy, are the unknown perturbed amplitudes.
The Chebychev polynomials are used to express the source
dependence in x for both dominant and perturbed sources,
while triangle and pulse functions, T, (z') and P,(z'), re-
spectively, are used to represent the perturbed sources in
z. When there is no transverse current (J, = 0) on the
microstrip line, the unknown charge amplitudes Dy; may
be expressed directly in terms of the current amplitudes
Cy; by the continuity equation, thus reducing the number
of unknown by a factor of two. A modified perturbation
technique, based on the technique developed in [9] is used
to determine the /;, Q; and § for the infinitely long mi-
crostrip line.
Equations (22) and (23) may be written as

J &' b, 2 = j(1 + R) Jo,(x") (B, cos (82")

— sin (Bz)) + Ji, (x', 2) (25)
p(x', h, 2') = (1 + R)py(x') (By, sin (5z")
+ cos (8z)) + pix’, 2°) (26)

where jB,, = (1 — R)/(1 + R) is the normalized input
susceptance for the open end. Since the perturbed ampli-
tudes J;, and p, given in (24c¢) and (24d) are still arbitrary,
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they may be defined so as to have the (1 + R) term appear
as a scale factor multiplying them as well. Since this
makes the (1 + R) term common to all source terms, it
may be normalized to 1.0 with no loss of generality. For
an open end, the potentials now become,

4 = to S_ U_m o, (x") By cos (B2')
0
= sin (BZ')G, dz’ + S i, (x',2")G, dz’

- SO o, (x") (By, cos (Bz') — sin (8z')G, dz’} dx'
27

P =¢ S_ {S po(x") (B, sin (Bz') + cos (82)G dz’

0
+ S pix',2") G dz’

- S pox") (By, sin (Bz') + cos (Bz')G dZ'} dx'.
0
(28)

Substituting (27) and (28) into (21) gives the electric field
in terms of the sources on the open end microstrip line.
When the requirement that £, = 0 on the microstrip is
enforced, the terms corresponding to the dominant mode
on the infinite line already satisfy the boundary condition
on the strip, so they drop out. The sources existing for z’
> 0 may be considered ‘‘source reversed’’ terms which
produce an impressed field in the region z < 0, but lo-
calized near the discontinuity. Because they have known
amplitudes, these dominant mode sources make up a
known forcing function. The electric field produced by
the perturbed sources J;, and p;, must cancel the tangen-
tial component of the applied field for z < 0. The method
of moments is then used to reduce the resulting integral
equation to a matrix equation which can be solved for the
unknown input admittance B;,, as well as for J,, and p,.
Only one matrix inversion is required to find B,,.
Unweighted Chebychev polynomials are used to test the
resulting equations along x rather than the weighted poly-
nomials, so as not to overemphasize the contribution to
the field from the sources at the edge of the microstrip.
Testing along z was performed using pulse functions. The
resulting integrals can all be evaluated in closed form, so
no numerical integration is required. Most of the double
sums have terms involving exponential decay, so they
converge rapidly. Only those terms which arise when the
source and field points coincide have no exponential de-
cay. Those terms, however, can all be summed over one
of the indices (the m index), resulting in expressions in-
volving only a single sum over n. These single sums can
be further manipulated so that their dominant portions are
summed into closed form, leaving only a correlation term
to be calculated [9], [11]. In this fashion, slowly con-
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verging series that might have required the evaluation of
90 000 or more terms (n = m =~ 300) to obtain a con-
verged solution can be accurately evaluated with 25 to 30
terms instead.

REesuLTs

Near the open end, the expansion pulses along z’ used
to represent the perturbation in the sources should have a
narrow pulse width, since the dependence of the sources
in this region will vary as |z'|~!/2, while wider pulse
widths should be used farther away from the open end.
This need for expansion pulses of significantly different
width can be accomplished by means of pulse compres-
sion, which is shown in Fig. 2 for triangle functions,
where properly weighted unit pulses are combined to cre-
ate wider pulses along with suitable transition pulses. The
primary advantage of this approach is that this summation
can be performed on the appropriate rows and columns of
the coefficient matrix, so that the expansion and testing
pulses used in evaluating the appropriate integrals can all
be of equal (‘“unit’’) width. In this way, no special atten-
tion needs to be paid to the evaluation of the integrals
involved in expansion and testing along the line. This re-
sults in a substantial computational savings in filling the
coeflicient array.

In generating these results, three modes (IMAX = 2 in
(28)) each are used to expand the dominant and perturbed
sources in x. With this representation, the amplitude of
the i = 2 mode is usually <1% of the i = 0 mode, with
each succeeding mode smaller in amplitude by a factor of
10 than its preceding one. Consequently, any further in-
crease in the number of modes beyond three provides no
significant effect on the solution. For the z dependence,
27 unit pulses are associated with the i = 0 mode, which
are compressed to 12 pulses. The i = 1 and 2 modes in x
each have five expansion pulses in z associated with them.
Due to the small number of pulses involved in the i = 1
and 2 modes, no pulse compression is used with them. On
the open end, the total current in the z direction must be
zero at z = 0. To accomplish this, the perturbed currents
must cancel the dominant mode current, resulting in the
relationship /,B;, + C;, = 0, or C;; = —B,l;, where the
C,, are the unknown current amplitudes at the open end
and the /; are the known dominant mode amplitudes. This
relationship reduces the number of unknowns used for this
particular formulation to 19 source amplitudes along with
B,, for a total of 20 unknowns, resulting in a 20 by 20
coefficient array. The number of expansion modes in x
and/or z may be increased by simply changing the appro-
priate summation indices. In this way, the accuracy of the
source representation may be increased to any required or
desired level.

The unit pulse width, A (where A = 2 - d in Fig. 2),
of the expansion functions was chosen to be 0.32 mm at
S =12.0 GHz (or A = 0.0053\, for sapphire). This pulse
width guaranteed a converged value for B;, [8] for all of
the examples presented. To verify the accuracy of the the-
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Fig. 2. Pulse compression along the microstrip line. For clarity, only the
triangle pulses are shown.

ory, as well as the resulting program, the program was
checked for the isotropic dielectric case, and was able to
duplicate data obtained in [2] and [8]. A further check was
to examine the dominant mode source amplitudes for an
infinite line using this technique with those determined
from a computer program developed on the basis of [9].
The sidewall spacing was kept the same as in [9] while
the placement of the top cover was varied from 10 - h to
12 - h, thus simulating an open structure. Using these
dimensions for the waveguide, there was practically no
difference observed in the resulting dominant mode am-
plitudes for an infinite line enclosed with sidewalls but no
top cover. Since placement of the top cover at a height of
10 - h above the substrate was found to be suitable, this
value was used throughout.

- Table I shows the results obtained using this technique
for several different anisotropic substrates as a function of
microstrip linewidth. The open circuit capacitance, C,. is
found using C,, = B,,/wZ,, where the characteristic
impedance Z; is obtained from [9], for an infinite micro-
strip line with sidewalls but no top cover. Calculations of
Z, performed for a microstrip line on an air dielectric (¢,
= 1.0) with and without a top cover gave values of Z,
that differed by less than 2% for strip widths ranging from
w/h = 0.25 to 6.0 and frequencies up to 10 GHz, so the
use of Zy values obtained from [9] is justified.

Table II shows the variation of C,, as a function of line
width for sapphire, and compares the results obtained for
a substrate with an isotropic dielectric constant of 9.4, as
well as for an isotropic dielectric constant of 11.6. Table
IIT shows the effects of fixed waveguide dimensions on
B;, and C,. as a function of frequency of the propagating
microstrip mode. For low frequencies, B;, varies linearly
with frequency, starting to deviate as the frequency in-
creases. This effect becomes more pronounced until the
cut off frequency of the E;; waveguide mode is reached.



2072

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 12, DECEMBER 1993

TABLE 1
OPEN CIRCUIT CAPACITANCE, C,,, FOR SEVERAL ANISOTROPIC DIELECTRIC MATERIALS. FREQ. = 2.0 GHz, & = 1.0 mm, b =
11 mm, 2a = 20 mm FOR W/h < 4.0, ELSE 2a = 10 (W/h). Z, VALUES OBTAINED FROM [8]. UNITS ARE pF /METER FOR C,,

W/h = 0.25 0.5 1.0 2.0 4.0 6.0
PTFE/Woven glass K, 1.914 1.941 1.981 2.042 2.129 2.182
Kk =2.84 Zy 150.5 119.9 90.02 62.46 39.82 29.50
Kk, = 2.45 Coe/ W 29.85 23.71 19.90 17.66 16.29 15.60
Boron Nitride K, 2.676 2.699 2.738 2.808 2.922 2.999
k=512 Zy 127.4 101.7 76.68 53.38 34.09 25.25
Kk, = 3.4 C,./W 43.04 33.95 28.27 24.84 22.72 21.66
Sapphire Ko 6.724 4.012 7.647 8.145 9.007 9.514
= 9.4 Zy 80.90 63.65 46.94 31.82 19.80 14.52
k, = 11.6 Coo/ W 80.36 65.56 56.38 50.95 47.43 45.35
Epsilam 10 K, 6.885 7.047 7.306 7.721 8.308 8.679
k=13 Zy 79.90 63.44 47.39 32.61 20.55 15.14
k, = 10.3 Coe/ W 95.28 76.26 64.44 57.35 52.93 50.49
TABLE II

VARIATION OF C,. As A FUNCTION OF LINE WIDTH FOR SAPPHIRE, k = 9.4, k, = 11.6 COMPARED TO THAT OF AN ISOTROPIC
DIELECTRIC. FREQ. = 2.0 GHz, & = 1.0 mm, » = 11 mm, 2a = 20 mm ForR W/h < 4.0, ELSE 2a = 10 (W /h).
UnITS ARE pF /METER FOR C,,

W/h = 0.25 0.5 1.0 2.0 4.0 6.0
Sapphire
k=94 Coe/ W = 80.36 65.56 56.38 50.95 47.43 45.35
Kk, = 11.6
Y Coo/ W = 75.56 61.06 52.10 46.80 43.42 41.52
=9
KL Coo/ W = 90.18 73.27 62.58 56.21 52.13 49.77
L= 11
TABLE III

VARIATION OF THE NORMALIZED INPUT SUSCEPTANCE,
B,,, AND OPEN CIRCUIT CAPACITANCE, C,., WITH
FREQUENCY. WAVEGUIDE DIMENSIONS ARE 2a = 20
mm,b=11mm, h=1mm,w=1mm(@w/h=

1.0)

Freq. (GHz) B, Co. (PF/m)
0.5 .008388 56.26
1.0 016776 56.26
2.0 033256 56.38
4.0 .068373 56.85
6.0 167738 90.81

This effect may be overcome by either frequency scaling
the input parameters or by adjusting the waveguide di-
mensions accordingly. Alternately, once C,. is obtained
at a low frequency, the corresponding value of B;, can be
calculated at the desired frequency. The computer pro-
gram developed to implement this technique was done in
compiled BASIC, requires less than 640 K of RAM, and
can run on a personal computer. When executed on an
Epson Equity II operating at a clock rate of 7.16 MHz,
the compiled code will compute B,, for an open end dis-
continuity in under three minutes per frequency point.
This includes the time required to find the first 100 LSE
and LSM eigenvalues for a dielectric loaded waveguide,
the dominant mode propagation constant, § along with the
dominant mode charge, and current amplitudes for an in-
finite microstrip line. Another factor that increased the
execution time is that some variables had to be recalcu-

lated many times during a particular run, since extra array
space that would be required for their storage could not
be defined while remaining within the available block size.
An in-line compiler could have significantly reduced the
run time for the program but could not be used with this
program since it generated a code that was substantially
larger than the personal computer of this particular gen-
eration could handle. Clearly significant performance
gains can be obtained simply by executing the program
on a more powerful platform and using a more efficient
language, other than BASIC.

Regardless of the platform used, further speed im-
provements are obtained when only the microstrip line-
width is varied for a given substrate thickness and fre-
quency. In this way, the program can be repeatedly
executed to calculate B;,, with the advantage that many
variables need not be recalculated each time; specifically,
the LSE and LSM mode eigenvalues need to be calculated
only once in this case.

This technique can be extended to rapidly and accu-
rately characterize a number of other commonly used dis-
continuity structures, especially ‘‘coaxial’’ two port
structures such as asymmetrical gaps and steps in width.
To characterize a two port structure in terms of an equiv-
alent ““Tee’’ or ‘‘Pi’’ network, the Tangent Plane method
[10] can be used to extract equivalent circuit parameter
values based on three distinct B;, values obtained with a
movable shorting plane located at a suitable distance from
the junction in question. Dielectric loss could also be in-
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cluded in this technique, although the effect of dielectric
loss is more significant when determining the propagation
constant of a microstrip line than in determining the open
circuit capacitance.

CONCLUSIONS

Microstrip open end discontinuities patterned on an-
isotropic dielectric substrates have been characterized in
terms of their normalized input susceptance and open cir-
cuit capacitance using a dynamic source reversal tech-
nique based on potential theory. The technique allows for
all of the sources on the discontinuity structure to be rep-
resented with proper edge conditions built in. The effects
of an enclosure on‘the discontinuity can be simulated by
a proper spacing of the sidewalls and top cover of the
waveguide enclosure. The BASIC computer program de-
veloped to implement this technique can be executed on
a personal computer with as little as 640 K of RAM. The
technique is computationally efficient, there is no need for
a source excitation, and the admittance can be solved for
directly in the case of a one port network. All integrals
involving the expansion and testing functions are per-
formed analytically so no numerical integrations are nec-
essary and the dominant portion of slowly converging se-
ries can be extracted and summed into closed form. The
technique can be expanded to characterize other com-
monly used microstrip discontinuities.
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