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Abstract—A technique for the full-wave characterization of
microstrip discontinuities fabricated on uniaxial anisotropic

substrates using a dynamic source reversal method based on
potential theory is presented. The dynamic source reversal

technique was introduced in 1989 by R. E. Collin and S. S.
Toncich [1]. The open end discontinuity is enclosed in a cut-off

waveguide of infinite extent, with the anisotropic axis aligned
perpendicular to the air-dielectric interface. A full description

of the sources on the microstrip line is included with proper
edge conditions built in. The resulting computer program is

written in compiled BASIC and is intended for execution on

personal computers possessing minimal memory andlor pro-

cessing resources. Extension to other discontinuities is dis-

cussed.

INTRODUCTION

w

ILE there is extensive data available on the mi-

crowave characterization of a variety of microstrip

discontinuities using both quasi-static [2-4] and full-wave

techniques [5-7], the characterization has been restricted

to isotropic substrates. To date, there is no published data

regarding the frequency dependent characterization of mi-

crostrip discontinuities patterned on anisotropic sub-

strates. Some very useful microwave substrates however,

specifically sapphire, are anisotropic and so any discon-

tinuity structures fabricated on them cannot be properly

characterized by the techniques that have been developed

for isotropic dielectric substrates.

A technique for the full-wave characterization of mi-

crostrip open ends fabricated on lossless uniaxial aniso-

tropic substrates has been developed and is presented here.

It is based on a dynamic source reversal technique that

uses potential theory [8], which is a generalization of the

charge reversal technique introduced several years ago [2].

The discontinuity is enclosed in a waveguide of infinite

extent whose dimensions are such that the guide is cut off

for the propagating frequency of the dominant microstrip

mode. All sources on the microstrip are represented, and
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the technique does not require a model for the source ex-

citation. The electric fields inside the waveguide are ob-

tained exclusively in terms of the sources on the micro-

strip line and the scalar, rather than dyadic Green’s func-

tions. These features combined to provide for accurate

modeling of the discontinuity along with substantial com-

putational savings over other techniques. This is impor-

tant in computer aided design programs where many it-

erations are often required to obtain desired circuit

performance.

DYNAMIC SOURCE REVERSAL TECHNIQUE

The anisotropic axis of the substrate is aligned perpen-

dicular to the air-dielectric interface as shown in Fig. 1.

The anisotropic dielectric may be represented as a tensor

quantity given by

K(y) = /((y) z + [KY(y) – K(Y)] Uyay (1)

where 1 is the unit dyad, and K(y) = KY(Y) = 1 for Y >

h. The microstrip line is assumed to be infinitely thin and

located at a height y = h +. The sources on the line are

the longitudinal and transverse currents, JZ and J., re-
spectively, and the charge, p. In terms of these sources,

the scalar and vector potentials, @ and A, respectively,

for the dielectric loaded waveguide may be detemnined

from

(V2 + Kk:)~x = ‘~I)~x (2)

(V2 + Kl%&z = ‘~o~z (3)

(V2 + KYrt~)~Y = j@~@l)(K - I)@ (~)~(y – ~)

+ jWO~O(f$ – K) a@ /~y (4)

[K(~2/th2 + ~2/~Z2) + r?(K(y)8/ay)/dy + K2(Y)@@

= –p/co + j@(Ky – l)AY(MY – ~)

– j@(Ky – It) a’4y/i3y (5)

where the Lorentz condition, V - A = –jqwyc( Y)*
along with 8K( y) /dy = – (K – 1)8( y – h) have been used

to obtain (2)-(5) [9]. The potentials appearing in (2)-(5)

are obtained from the appropriate Green’s functions and
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Fig. 1, Shielded microstrip geometry. (a) Front view (b) Top view.

the corresponding sources using

4,, (JLh z) = /Jo H GJ,Z(X, h, Z; x’, h, z’)
z’ x’

“ JX>z(x’, h, z’) a!x’ dz’ (6)

eo@(.x,h, z) =
U

G(.x, h, z; x’, h, Z’)
z’ x’

“ p(x), h, z’) a!x’ dz’. (7)

Expressions for the Green’s functions corresponding to

the geometry shown in Fig. 1 may be obtained in the fol-

lowing manner. GX and G, must satisfy the following

expression

(V2 + Kk~)GX,z = -6(x - X’)8(y - h)8(z – z’). (8)

Expressions for the Green’s functions will be obtained us-
ing a Fourier transform method. Assuming a general so-

lution for GX,, of the form

where

[

Cos (+x) for G,
P. ($ =

sin (u~x) for GX

the form

&(Y) = An sin (@c) sin (lY), y < h (lOa)

fi(y) = An sin (lb) sin (p(b - y)), y > h (lOb)

Substituting (9), (lOa) and (lOb) into (8) and performing

the required calculations, gives the Green’s function com-

ponents as

GX,Z(X, h, z; x’, h, z’)

sin (lh)e–Jti ‘z–”) do (11)

where

$on(x, x’) =

@n(x, x’) =

DZ~ =

Cos (Unx) Cos (Unx’) for Gz

sin (u.x) sin (u.x’) for G.

1/a (p sin (lb) cos (pc)

+ 1 sin (pc) cos (lb)) (12)

and the 1’s :nd p’s are related byp2 = kg – W2 – u1, 12

= Kk: – u- – U:.

The expressions for G and GY, corresponding to @ and

AY, respectively, are more complicated since these expres-

sions are coupled. As a result, they must be solved si-

multaneously. However, solutions for GY and G may be

obtained in a somewhat easier fashion by noticing that

I
m

GY(x, h, z; X’, h, z’) = (1/27r)
—m

(13)

!
w

G(x> h, Z; X’, h, Z’) = (1/270 _m

. f(x, h, /3; x’, h, z’)ejp’ d/3

(14)

where gY( ) and f ( ) are the Green’s functions calculated

for a z dependence of e-JBz in [9], for an infinite microstrip

line with side walls, but not top cover. With a top cover

in place, the Y dependence is chosen to be of the form

[

Al,, sin (lly) + A2. sin (12y),

L(Y) = y < h (15a)
A3. sin (p (b – y)) y>h

and

{

B1~ COS (ZIY) + B2. COS (&JJ),

&Z(Y) = y < h (15b)
B3. COS (p (b – y)) y>h

and u. = n~ /2a for n odd. and the v de~endence is of,, ,. instead of the decaying exponential functions used in [9].
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The eigenvalues for this configuration are, for y < h

l:=KO k’2 – ~: (16a)

l; = Kk~ – (K/Ky)~~ (16b)

and p 2=k:–u2 – u; for y > h, as in the case of G., Z,

while~~ =u~ + u 2. Performing the required calculations

to solve for the unknown coefficients Al z,~. for @ will

result in the following expression which ;S analogous to

(13) in [9]

H.(a) = (k~/7~) “ (P. o sin (PC)

“ sin (lly) /eo(p “ sin (llh) “ cos (pc) + 11

“ cos (Zlh) . sin (pc)))

+ (Z2P/73 “ (p. “ sin (PC)

. sin (12y) /EO(pK - sin @c) .

0 cos (PC) o sin (i2h))).

COS (12h) + 12

(17)

Performing the required contour integration to calculate

the inverse Fourier Transform for @ involving the expres-

sion j Y~H. (w)ej”(z - z‘) du, and noting that dll /do =

- w/11 while d12/dw = – (K/ Ky)OJ /22 allows for the ap-

propriate Green’s function for the potential to be ex-

pressed as

G(x, h, Z; x’, h, Z’)

= (1/60a) ii ii cos (un x’) o cos (UnX’)
n=l ~=(1

. {k~ o F(m) “ exp [-~.mlz - z’1]/

((k: – P:) o Twit)

– FB(m) “ exp [–~.~lz – 2’11/

((k: – P;) “ 7nm)l (18a)

where

F(m) = 1: “ pm “ sin2 (1~h) “ sin2 (p~c) /(1~ “ pm

o (h “ sin2 (p~c) + c . sin2 (l~h))

– (K – 1) “ k; “ sin2 (l~h) “ sin (p~c)

“ Cos (pmC)). (18b)

FB(m) = 1: “ F; “ sin (~Jz) “ sin (p~c)/{(~~ “ c

+ Ka “ K “ p; “ h) o Sin (pmc) “ sin (~~h)

‘Dm”jm “(/( -c+ K.sh)scos(j7~c)

“ Cos (~~h) – K “ im - sin (pmc) . Cos (~~h)

— Ka c pm c sin (Inc) “ cos (pnh)}, (18c)

where Ka = Ky/ K. The y.~ = (u; + l; – Kk~)1i2 and ~.~

‘(U:+Ka. ~~ – KYk~)1/2 are the evanescent waveguide

propagation constants, while the 1,., p ~, 1~, and pm are the
LSE and LSM eigenvalues, respectively,, of the cut-off

waveguide. These eigenvalues are related by the expres-

sions

1: – pi = (K – 1)2 for the LSE eigenvalues.

(19a)

Ka .~;–~;=(Ky–1)2 for the LSM eigenvalues.

(19b)

Note that when Ky = K, the above expressions become the

same as for the isotropic case. Notice that the effect of the

anisotropy is to change the LSM eigenvalues compared to

those obtained for the isotropic case.

The final expressions for the remaining Green’s func-

tions for a dielectric loaded waveguide of infinite extent

now become

G,z(x> k Z; x’, h, Z’)

mm

= (l/a) Z Z Pn(x, x’) “ exp [–-y.~lz – 2’1]
n=l~=o

. F(~)/ynm, (20)

where F(m) is defined in ( 18b), p. (x, x’) is defined in

(12), and G(x, h, z; x’, h, z’) is defined in (18).

With the Green’s functions so obtained, the compo-

nents of the electric field can be obtained from the poten-

tials given in (6) and (7), as

EX = –juAX – a+ /ax, EY = –juAY – az /ay

and

E, = –juAZ – a+ /az (21)

where it is required that for this geometry EX and Ez vanish

on the microstrip. The fields thus obtained are expressed

in terms of the LSE and LSM (with respect to y) modes

of the dielectric loaded waveguide. The anisotropic effect

appears only in the LSM mode terms, which are present

in AY and @. The LSE waveguide modes are unchanged

from those obtained for the isotropic case.

A complete set of dominant mode sources on the mi-

crostrip are represented: the longitudinal and transverse

currents, as Weli as the charge on the microstrip line, with

appropriate edge conditions built in. Over the usefull op-

erating range of most microstrip discontinuities, the am-

plitude of the transverse current, J., is very small relative

to that of JZ and p, since the discontinuity is charge dom-

inated under such circumstances. The effect of J. becomes

more pronounced for wide strips (w/h = 5) as the fre-

quency is increased. Therefore, for a wide range of prac-

tical open end discontinuities, a valid approximation is to

take J. = O, so therefore, A. = 0, As a result, only the
boundary condition EZ = O needs to be satisfied for this

problem.

A line terminated at z = O, forming an open end, would

create reflected dominant mode sources on the line, along

with perturbed sources localized near the discontinuity.

The total source distribution on an open end discontinuity
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may be written as,

JZ(X’, h, z’) = JoZ(x’)(e-joz’ – Re+JPz’) + .71z(x’, z’)

(22)

–jOz’ + R~+j6z’) + p(x’, Z’),
p(x’, h, z’) = p(x’) (e

(23)

for z’ < 0, where R is an unknown reflection coefficient,

and J1’ and P1 represent the perturbed source amplitudes
near the open end.

An excellent representation for the x dependence of the

sources on the microstrip line can be given in terms of

weighted Chebychev polynomials, T2i (x /w). (1 –
(x/w)) - 1/2 where w is the microstrip width. Using the

change of variable x = w sin (3, the sources may be ex-

pressed as

IMAX

~z(e’) = Z 1, cos (2ie’)/cOs e’ (24a)
ia(j

IMAX

p(e’) = ,~o Qi cos (2i(3’)/cos (1’ (24b)

IMAX KMAX

~lz(e’, z’) =j Z Z ~i COS (2@’) T~(z’)/COs e’
i=O ~=0

(24c)

IMAX KMAX

pl(e’, 23 = X X D~icos (2ie’)pk(z’)/co5 e’
i=O ~=0

(24d)

where li and Qi are the yet to be determined dominant

mode current and charge amplitudes for an infinite line,

and Cki and Dki are the unknown perturbed amplitudes.

The Chebychev polynomials are used to express the source

dependence in x for both dominant and perturbed sources,

while triangle and PUISe fUIICtiOIIS, Tk (Z’) and pk (Z’), re-

spectively, are used to represent the perturbed sources in

z. When there is no transverse current (.IX = O) on the
microstrip line, the unknown charge amplitudes Dki may

be expressed directly in terms of the current amplitudes

Cki by the continuity equation, thus reducing the number

of unknown by a factor of two, A modified perturbation

technique, based on the technique developed in [9] is used

to determine the li, Qi and ~ for the infinitely long mi-

crostrip line.

Equations (22) and (23) may be written as

~z(X’, h, Z’) = j(l + R) ~OZ(X’) (B,. COs (6Z’)

– sin (Pz’)) + .ll Z(x’, z’) (25)

p(x’, h, z’) = (1 + R)po(x’) (Bin sin (~z’)

+ Cos (~z’)) + p~(x’, z’) (26)

where jBi~ = (1 – R)/ ( 1 + R) is the normalized input

susceptance for the open end. Since the perturbed ampli-

tudes J,, and pl given in (24c) and (24d) are still arbitrary,

they may be defined so as to have the (1 + R) term appear

as a scale factor multiplying them as well. Since this

makes the (1 + R) term common to all source terms, it

may be normalized to 1.0 with no loss of generality. For

an open end, the potentials now become,

w

~ {1

co

Az = p. jJ()~(X’) (Bin COS(~Z’)
–w –w

[

o

– sin (Dz’))GZ dz’ + JIZ(X’,Z’)GZ dZ’
—m

~

m

— 1jJOZ(X’) (Bin cos (~Z’) – sin (13z’))GZ dz’ CI!X’
o

(27)

w

~ [1

m

+=60 PO(X’) (% sin (Pz’) + cos (6z’))G ~z’
—w —m

!

o

+ Pl(x’,z’) G dZ’
—m

-!

m

1
PO(X’) (~in sin (6z’) + cos (Bz’))G dz’ dx’.

o

(28)

Substituting (27) and (28) into (21) gives the electric field

in terms of the sources on the open end microstrip line.

When the requirement that EZ = O on the microstrip is

enforced, the terms corresponding to the dominant mode

on the infinite line already satisfy the boundary condition

on the strip, so they drop out. The sources existing for z‘

> 0 may be considered “source reversed” terms which

produce an impressed field in the region z < 0, but lo-

calized near the discontinuity. Because they have known

amplitudes, these dominant mode sources make up a

known forcing function. The electric field produced by

the perturbed sources .lI z and PI, must cancel the tangen-

tial component of the applied field for z s O. The method

of moments is then used to reduce the resulting integral

equation to a matrix equation which can be solved for the

unknown input admittance Bin, as well as for .lI ~ and p,.

Only one matrix inversion is required to find Bin.

Unweighed Chebychev polynomials are used to test the

resulting equations along x rather than the weighted poly-

nomials, so as not to overemphasize the contribution to

the field from the sources at the edge of the microstrip.

Testing along z was performed using pulse functions. The

resulting integrals can all be evaluated in closed form, so

no numerical integration is required. Most of the double

sums have terms involving exponential decay, so they

converge rapidly. Only those terms which arise when the

source and field points coincide have no exponential de-

cay. Those terms, however, can all be summed over one

of the indices (the m index), resulting in expressions in-

volving only a single sum over n. These single sums can

be further manipulated so that their dominant portions are

summed into closed form, leaving only a correlation term

to be calculated [9], [11]. In this fashion, slowly con-
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verging series that might have required the evaluation of

90000 or more terms (n = m = 300) to obtain a con-

verged solution can be accurately evaluated with 25 to 30

terms instead.

RESULTS

Near the open end, the expansion pulses along z’ used

to represent the perturbation in the sources should have a

narrow pulse width, since the dependence of the sources

in this region will vary as \z‘ [ – 1/2, while wider pulse

widths should be used farther away from the open end.

This need for expansion pulses of significantly different

width can be accomplished by means of pulse compres-

sion, which is shown in Fig. 2 for triangle functions,

where properly weighted unit pulses are combined to cre-

ate wider pulses along with suitable transition pulses. The

primary advantage of this approach is that this summation
can be performed on the appropriate rows and columns of

the coefficient matrix, so that the expansion and testing

pulses used in evaluating the appropriate integrals can all

be of equal (’‘unit”) width. In this way, no special atten-

tion needs to be paid to the evaluation of the integrals

involved in expansion and testing along the line. This re-

sults in a substantial computational savings in filling the

coefficient array.

In generating these results, three modes (IMAX = 2 in

(28)) each are used to expand the dominant and perturbed
sources in x. With this representation, the amplitude of

the i = 2 mode is usually <1 % of the i = O mode, with

each succeeding mode smaller in amplitude by a factor of

10 than its preceding one. Consequently, any further in-

crease in the number of modes beyond three provides no

significant effect on the solution. For the z dependence,

27 unit pulses are associated with the i = O mode, which

are compressed to 12 pulses. The i = 1 and 2 modes in x

each have five expansion pulses in z associated with them.

Due to the small number of pulses involved in the i = 1

and 2 modes, no pulse compression is used with them. On

the open end, the total current in the z direction must be

zero at z = O. To accomplish this, the perturbed currents

must cancel the dominant mode current, resulting in the

relationship llBi~ + Cll = O, or Clf = – Blnli, where the

Cl, are the unknown current amplitudes at the open end

and the lj are the known dominant mode amplitudes. This

relationship reduces the number of unknowns used for this

particular formulation to 19 source amplitudes along with

B,. for a total of 20 unknowns, resulting in a 20 by 20

coefficient array. The number of expansion modes in x

and/or z may be increased by simply changing the appro-

priate summation indices. In this way, the accuracy of the

source representation may be increased to any required or

desired level.

The unit pulse width, A (where A = 2 0 din Fig. 2),

of the expansion functions was chosen to be 0.32 mm at

.f = 2.0 GHz (or A = 0.0053Ag for sapphire). This pulse
width guaranteed a converged value for Bin [8] for all of

the examples presented. To verify the accuracy of the the-

A A A=*A
—

o z’

111111
II

(iiy2 + (iii) I

111111

111111

(ii)!2 + (iii) + (iy2
II

I

I 11111-
111111
Ill

(iiJK3 + 2(iii)/3 + (iV) + (v~2 I I

Fig. 2. Pulse compression along the microstrip line, For clarity, only the
triangle pulses are shown.

ory, as well as the resulting program, the program was

checked for the isotropic dielectric case, and was able to

duplicate data obtained in [2] and [8]. A further check was

to examine the dominant mode source amplitudes for an

infinite line using this technique with those determined

from a computer program developed on the basis off [9].

The sidewall spacing was kept the same as in [9] while

the placement of the top cover was varied from 10 “ h to

12 . h, thus simulating an open structure. Using these

dimensions for the waveguide, there was practically no

difference observed in the resulting dominant mode am-

plitudes for an infinite line enclosed with sidewalls but no

top cover. Since placement of the top cover at a height of

10 “ h above the substrate was found to be suitable, this

value was used throughout.

Table I shows the results obtained using this technique

for several different anisotropic substrates as a function of

microstrip linewidth. The open circuit capacitance, COCis

found using COC = Bin /ti.ZO, where the characteristic

impedance Z. is obtained from [9], for an infinite m~icro-

strip line with sidewalls but no top cover. Calculations of

Z. performed for a microstrip line on an air dielectric (cl

= 1.0) with and without a top cover gave values of Z.

that differed by less than 2 % for strip widths ranging from

w/h = 0.25 to 6.0 and frequencies up to 10 GHz, so the

use of Z. values obtained from [9] is justified.

Table II shows the variation of C.. as a function of line

width for sapphire, and compares the results obtained for

a substrate with an isotropic dielectric constant of 9.4, as

well as for an isotropic dielectric constant of 11.6. Table

111 shows the effects of fixed waveguide dimensions on

Bi. and CO, as a function of frequency of the propagating

microstrip mode. For 10,w frequencies, Bi. varies linearly

with frequency, starting to deviate as the frequency in-

creases. This effect becomes more pronounced until the

cut off frequency of the El 1 waveguide mode is reached.
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TABLE I
OPEN CIRCUIT CAPACITANCE, C.C, FOR SEVERAL ANISOTROPIC DIELECTRIC MATERIALS. FREQ. = 2.0 GHz, h = 1.0 mm, b =
11 mm, 2a = 20 mm FOR W/h < 4.0, ELSE 2a = 10 (W/h). 20 VALUES OBTAINED FROM [8]. UNITS ARE PF/METER FOR Co.

W/h = 0.25 0.5 1.0 2.0 4.0 6.0

PTFEIWoven glass K, 1.914 1.941 1.981 2.042 2.129 2.182
K = 2.84 z~ 150.5 119.9 90.02 62.46 39.82 29.50

Ky = 2.45 coc/ w 29.85 23.71 19.90 17.66 16.29 15.60

Boron Nitride Ke 2.676 2.699 2.738 2.808 2.922 2.999
K= 5.12 z~ 127.4 101.7 76.68 53.38 34.09 25.25
Ky = 3.4 coc/ w 43.04 33.95 28.27 24.84 22.72 21.66

Sapphire K. 6.724 4.012 7.647 8.145 9.007 9.514
K = 9.4 z~ 80.90 63.65 46.94 31.82 19.80 14.52
Ky= 11.6 coc/ w 80.36 65.56 56.38 50.95 47.43 45.35

Epsdam 10 6.885 7.047 7.306 7.721 8.308 8.679
~=13 20 79.90 63.44 47.39 32.61 20.55 15.14
Ky = 10.3 coc/ w 95.28 76.26 64.44 57,35 52.93 50.49

TABLE II
VARIATION OF C.e As A FUNCTION OF LINE WIDTH FOR SAPPHIRE, K = 9.4, KY= 11.6 COMPARED TO THAT OF AN ISOTROPIC

DIELECTRIC. FREQ. = 2.0 GHz, h = 1.0 mm, b = 11 mm, 2a = 20 mm FOR W/h <4.0, ELSE 2a = 10 (W/h).

UNITS ARE pF/METER FOR C.,

W/h = 0.25 0.5 1.0 2.0 4.0 6.0

Sapphme
K = 9.4 coc/w = 80.36 65.56 56.38 50.95 47.43 45.35
KY= 11.6

K = 9.4
Ky = 9.4

coc/w = 75.56 61.06 52.10 46.80 43.42 41.52

K=ll.6
cdc/w = 90.18 73.27 62.58

K, = 11.6
56.21 52.13 49.77

TABLE III
VARIATION OF THE NORMALIZED INPUT SUSCEPTANCE,

B,., AND OPEN CIRCUIT CAPACITANCE, C.C, WITH

FREQUENCY. WAVEGUIDE DIMENSIONS ARE 2a = 20
mm, b=llmm, h=lmm, w= lmm (w/h=

1.0)

Freq. (GHz) B,n COC(pF/m)

0.5 .008388 56.26
1.0 .016776 56.26
2.0 .033256 56.38
4.0 .068373 56.85
6.0 .167738 90.81

This effect may be overcome by either frequency scaling

the input parameters or by adjusting the waveguide di-

mensions accordingly. Alternately, once COCis obtained

at a low frequency, the corresponding value of Bin can be

calculated at the desired frequency. The computer pro-
gram developed to implement this technique was done in

compiled BASIC, requires less than 640 K of RAM, and

can run on a personal computer. When executed on an

Epson Equity II operating at a clock rate of 7.16 MHz,

the compiled code will compute B,. for an open end dis-

continuity in under three minutes per frequency point.

This includes the time required to find the first 100 LSE

and LSM eigenvalues for a dielectric loaded waveguide,

the dominant mode propagation constant, ~ along with the

dominant mode charge, and current amplitudes for an in-

finite microstrip line. Another factor that increased the

execution time is that some variables had to be recalcu-

lated many times during a particular run, since extra array

space that would be required for their storage could not

be defined while remaining within the available block size.

An in-line compiler could have significantly reduced the

run time for the program but could not be used with this

program since it generated a code that was substantially

larger than the personal computer of this particular gen-

eration could handle. Clearly significant performance

gains can be obtained simply by executing the program

on a more powerful platform and using a more efficient

language, other than BASIC.

Regardless of the ‘platform used, further speed im-

provements are obtained when only the microstrip line-

width is varied for a given substrate thickness and fre-

quency. In this way, the program can be repeatedly

executed to calculate Bin, with the advantage that many

variables need not be recalculated each time; specifically,
the LSE and LSM mode eigenvalues need to be calculated

only once in this case.

This technique can be extended to rapidly and accu-

rately characterize a number of other commonly used dis-

continuity structures, especially “coaxial” two port

structures such as asymmetrical gaps and steps in width.

To characterize a two port structure in terms of an equiv-

alent “Tee” or” Pi” network, the Tangent Plane method

[10] can be used to extract equivalent circuit parameter

values based on three distinct Bill values obtained with a

movable shorting plane located at a suitable distance from

the junction in question. Dielectric loss could also be in-
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eluded in this technique, although the effect of ‘dielectric

loss is more significant when determining the propagation

constant of a microstrip line than in determining the open

circuit capacitance.

CONCLUSIONS

Microstrip open end discontinuities patterned on an-

isotropic dielectric substrates have been characterized in

terms of their normalized input susceptance and open cir-

cuit capacitance using a dynamic source reversal tech-

nique based on potential theory. The technique allows for

all of the sources on the discontinuity structure to be rep-

resented with proper edge conditions built in. The effects

of an enclosure on ‘the discontinuity can be simulated by

a proper spacing of the sidewalls and top cover of the

waveguide enclosure. The BASIC computer program de-

veloped to implement this technique can be executed on

a personal computer with as little as 640 K of RAM. The

technique is computationally efficient, there is no need for

a source excitation, and the admittance can be solved for

directly in the case of a one port network. All integrals

involving the expansion and testing functions are per-

formed analytically so no numerical integrations are nec-

essary and the dominant portion of slowly converging se-

ries can be extracted and summed into closed form. The

technique can be expanded to characterize other com-

monly used microstrip discontinuities.

[1]
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[3]

[4]

[5]
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